Ginny Catania

Institute for Geophysics, University of Texas, Austin

Christina Hulbe

Department of Geology, Portland State University

Howard Conway

Earth and Space Sciences, University of Washington

Kamb grounding line melt

- Kamb Ice Stream shutdown ~160 years ago
- dipping layers and basal diffractors
- affected a widespread (~100 km) region

Kamb grounding line melt

- layers warped from grounding line melt in past
- basal diffractors due to basal crevassing
- what do modern grounding lines look like?

North side of Siple Dome

 grounding line picked using ice thickness and determining where the surface is at hydrostatic equilibrium

- grounding line picked using ice thickness and determining where the surface is at hydrostatic equilibrium
- slope break defines where the hydrostatic anomaly starts to increase significantly

- grounding line picked using ice thickness and determining where the surface is at hydrostatic equilibrium
- slope break defines where the hydrostatic anomaly starts to increase significantly
- location where basal melting is focused picked in layers

- hydrostatic equil. occurs just upstream of basal crevassing
- melting occurs slightly downstream or at hydrostatic equil.
- heterogeneity in where and how much melting occurs

- isochrone model is used to characterize melt
- how long vs. melt rate
- model cannot give exact melt rate; when melting occurred

Distance (km)

Kamb grounding line melt

from MacAyeal, (1984)

from Holland et al., (2003)

- Holland et al., (2003); sub-ice shelf circulation model
- MacAyeal (1984); tidal mixing model
- both predict modest melt rates (~1 m/a peak melt rates)
- generally agree that grounding line melt is focused along Mercer/Whillans outlet and northern SDM coastline

from MacAyeal, (1984)

from Holland et al., (2003)

- for Northern SDM margin use melt rate of ~0.2 m/a
- spatial variability in melt rate

A solution that fits both sets of isochrones with a melt rate of 0.2 m/a gives melt time of ~200-400 years

South side of Siple Dome

 grounding line picked using ice thickness and surface elevations to find hydrostatic equilibrium

- grounding line picked using ice thickness and surface elevations to find hydrostatic equilibrium
- slope break defines where the hydrostatic anomaly starts to increase significantly

- grounding line picked using ice thickness and surface elevations to find hydrostatic equilibrium
- slope break defines where the hydrostatic anomaly starts to increase significantly
- location where basal melting is focused picked in layers

- no melting signature at modern grounding line
- paleo-grounding line left behind a surface scar
- overprinted crevasse sets may be related to g.l. migration

from MacAyeal, (1984)

from Holland et al., (2003)

- for Southern SDM margin use melt rate of ~0.02 m/a
- valid for modern melt rates, perhaps not past melt rates

Presence of 450 year old rifted terrain suggests that grounding line was at paleo-location ~650 years B.P.

Engelhard Ridge

amb Ice Stream

Engelhard □ slope break ☆ grounding line syncline amb Ice Stream 10 km

South side of Roosevelt Island

- co-located slope break and floatation point
- largest slope change measured here
- warped layers ~1km downstream

from MacAyeal, (1984)

from Holland et al., (2003)

• for Southern Roosevelt Island use melt rate of ~0.02 m/a or lower

grounding line position recorded in internal stratigraphy where ice flow is slow and 2-D

- grounding line position recorded in internal stratigraphy where ice flow is slow and 2-D
- variability in melt rate in space and time is observed;
 - North side of SDM: melt rate 20 cm/y = 300-400 years of occupation
 - paleo-g.l. South side of SDM: melt rate 2 cm/y = 100-200 years (beginning 650 y.b.p.)
 - Roosevelt Island: higher melt rate than expected (>30 cm/y) = 300-400 years

- grounding line position recorded in internal stratigraphy where ice flow is slow and 2-D
- variability in melt rate in space and time is observed;
 - North side of SDM: melt rate 20 cm/y = 300-400 years of occupation
 - paleo-g.l. South side of SDM: melt rate 2 cm/y = 100-200 years (beginning 650 y.b.p.)
 - Roosevelt Island: higher melt rate than expected (>30 cm/y) = 300-400 years

correlation between amount of layer downwarping and change in slope at grounding

Location	change in slope	minimum melt rate
Roosevelt Island	0.02	0.3 m/a
North SDM 1	0.01	0.1 m/a
North SDM 2	0.007	0.05 m/a

- grounding line position recorded in internal stratigraphy where ice flow is slow and 2-D
- variability in melt rate in space and time is observed;
 - North side of SDM: melt rate 20 cm/y = 300-400 years of occupation
 - paleo-g.l. South side of SDM: melt rate 2 cm/y = 100-200 years (beginning 650 y.b.p.)
 - Roosevelt Island: higher melt rate than expected (>30 cm/y) = 300-400 years
- correlation between amount of layer downwarping and change in slope at grounding line

from Holland et al., (2003)